Autor: |
Bernd Prade, Thomas Hahner, Stefan Hoffmann, Holger Streb |
Rok vydání: |
2001 |
Předmět: |
|
Zdroj: |
Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations. |
DOI: |
10.1115/2001-gt-0077 |
Popis: |
The Vx4.3A gas turbine family has already been well received by the market. Nevertheless the market drives technology towards both increased turbine inlet temperatures and reduced emissions. The HR3 burner was originally developed for the V4.2 and Vx4.3 fleet featuring silo combustors in order to mitigate the risk of flashback and to improve the NOx- emissions (Prade, Streb, 1996). Due to its favourable performance characteristics in the Vx4.3 family the advanced HR3 burner was adapted to the Vx4.3A series with annular combustor. The paper reports upon the design, testing and field evaluation steps which were necessary to implement the burner for the 50 and 60 cycle gas turbines. With CFD calculations the flow field and the mixing of natural gas and combustion air have been optimised. A number of tests in the Siemens test facilities confirmed these predictions. The atmospheric 3 burner segment combustion test rig allows to test flame interaction, stability and exhaust gas emission simultaneously. In the Siemens Berlin Test Facility which provides a platform for full scale gas turbine testing 24 HR3-burners were implemented into a V84.3A gas turbine with a base load power output of 184 MW at ISO conditions for prototype testing before introducing this new burner generation into the bigger 50 cycle family V94.3A. Implementation of 24 scaled HR3 burners were installed in the V94.3A of Cottam Development Centre (Great Britain) and demonstrated an excellent performance. The gas turbine reached an ISO base load output of 265 MW with NOx emissions well below 25 ppmvd. Due to the very promising test results in Berlin and Cottam, this burner modification, which can be retrofitted to all VX4.3A gas turbines, was implemented nearly fleet wide. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|