Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure
Autor: | S. V. Galaev |
---|---|
Rok vydání: | 2016 |
Předmět: |
Weyl tensor
Christoffel symbols Riemann curvature tensor General Mathematics 010102 general mathematics Mathematical analysis 01 natural sciences symbols.namesake 0103 physical sciences symbols Ricci decomposition Curvature form Mathematics::Differential Geometry 010307 mathematical physics 0101 mathematics Metric tensor (general relativity) Metric connection Mathematics Scalar curvature Mathematical physics |
Zdroj: | Siberian Mathematical Journal. 57:498-504 |
ISSN: | 1573-9260 0037-4466 |
DOI: | 10.1134/s0037446616030101 |
Popis: | Considering a manifold (φ, ξ, η, g, X, D) with contact metric structure, we introduce the concept of N-extended connection (connection on a vector bundle (D, π,X)), with N an endomorphism of the distribution D, and show that the curvature tensor of each N-extended connection for a suitably chosen endomorphism N coincides with the Wagner curvature tensor. |
Databáze: | OpenAIRE |
Externí odkaz: |