Crucial points in perpendicular recording

Autor: J. Desserre
Rok vydání: 1984
Předmět:
Zdroj: IEEE Transactions on Magnetics. 20:663-668
ISSN: 0018-9464
DOI: 10.1109/tmag.1984.1063334
Popis: Since the introduction of perpendicular recording on a floppy disc by IWASAKI in 1977 and its equivalent design on a rigid disc (SPH-like sensor + double-layer medium) in 1981, many tests have been carried out on different R/W sensors. For each test the main goal was the fci record or the improvement of the magnetic layer. Seen from the recording system point of view, the head and the medium are looked at as a unit through a specification, unchanging with increasing area density. For example, a minimum of 26 dB and 70 % must be achieved for the S/N ratio and the resolution respectively. By considering the noise of the best electronic channel (with a thin film head), and ignoring mechanical and medium noises, the output signal must be at least 250 μv pop. For a 50 Kfci application, however, a sensor does not yet exist. Using a ferrite head with a 1.2 μm gap length to write on FeTbGd, the level of the signal will not be high enough to be used. It is improved with a 0.6 μm gap head but then, the field doesn't allow us to write ! Such problems exist also with thin film heads or SPH like sensors on rigid discs. To improve the R/W process, the trend is to use a double layer medium e.g. CrCo/FeNi. The results show that this direction is not necessarily the best. For example, when erasing or over-writing with the head, some domains appear in the FeNi film which create noise from the track or its edge. Another example is the fact that the optimum parameters for a medium such as CrCo are not always compatible with the characteristics of the head (i.e. H c , the thickness, the crystallographic orientation, the bit stability compared to the write field, the signal, the noise...).
Databáze: OpenAIRE