Popis: |
The capability of commercial nanoparticles to perform as foam stabilizer were investigated at reservoir temperature of 96°C. Al2O3, Fe3O4, Co3O4, CuO, MgO, NiO, ZrO2, ZnO and SiO2 nanoparticles that were characterized using XRD, FTIR, FESEM-EDX, TEM and PSA, were blended in the in-house formulated surfactant named IVF respectively at a particular ratio. The test was performed with and without the presence of reservoir crude oil. Results showed that formulation with nanoparticles enhanced foam stability by having longer foam half-life than the IVF surfactant alone, especially in the absence of oil. Only SiO2 nanoparticles were observed to have improved the foam stability in both test conditions. The unique properties of SiO2 as a semi-metal oxide material may have contributed to the insensitivity of SiO2 nanoparticle towards crude oil which is known as a foam destabilizer. The physical barrier that was formed by SiO2 nanoparticles at the foam lamella were probably unaffected by the presence of crude oil, thus allowing the foams to maintain its stability. In thermal stability tests, we observed the instability of all nanoparticles in the IVF formulation at 96°C. Nanoparticles were observed to have separated and settled within 24 hours. Therefore, surface modification of nanoparticle was done to establish steric stabilization by grafting macro-molecule of polymer onto the surface of SiO2. This in-house developed polymer grafted silica nanoparticles are named ZPG nanoparticles. The ZPG nanoparticles passed the thermal stability test at 96°C for a duration of 3 months. In the foam wetness analysis, ZPG nanoparticles were observed to have produced more wet foams than IVF formulation alone, indicating that ZPG is suitable to be used as foam stabilizer for EOR process as it showed catalytic behaviour and thermally well-stable at reservoir temperature. |