No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation
Autor: | Maria Radosz, Vu Hoang |
---|---|
Rok vydání: | 2017 |
Předmět: |
Applied Mathematics
General Mathematics Semi-implicit Euler method 010102 general mathematics Mathematical analysis Hyperbolic function Characteristic equation 01 natural sciences Backward Euler method Euler equations 010101 applied mathematics symbols.namesake Euler–Tricomi equation Flow (mathematics) symbols 0101 mathematics Euler number Mathematics |
Zdroj: | Transactions of the American Mathematical Society. 369:7169-7211 |
ISSN: | 1088-6850 0002-9947 |
DOI: | 10.1090/tran/6900 |
Popis: | We consider smooth, double-odd solutions of the two-dimensional Euler equation in [ − 1 , 1 ) 2 [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regime and prove that the compression of the fluid induced by the hyperbolic flow alone is not sufficient to create double-exponential growth of the gradient. |
Databáze: | OpenAIRE |
Externí odkaz: |