Comparison of bus driving cycles elaborated for vehicle dynamic simulation

Autor: Attila Vámosi, Imre Kocsis, Levente Czégé
Rok vydání: 2021
Předmět:
Zdroj: International Review of Applied Sciences and Engineering. 12:86-91
ISSN: 2063-4269
2062-0810
Popis: Due to the technological progress, new approaches such as model-based design are spreading in the development process in the automotive industry to meet the increased requirements related to lower fuel consumption and reduced emission. This work is part of a research project which focuses on dynamic modeling of vehicles aimed at analyzing and optimizing the emission and fuel consumption. To model the driver behavior, the simulation control algorithm requires a predetermined speed-time curve as an input. The completeness of this driving cycle is a crucial factor in the simulation, and as far as the legislative driving cycles are not accurate enough, it is indispensable to develop our own one representing our narrower area and driving conditions. This article considers two common drive cycle design methods, comparing the micro-trip-based approach and the Markov-chain approach. The new driving cycle has been developed applying the Markov-chain approach and compared to a driving cycle introduced in our recent paper using the micro-trip method. The comparison basis is the Speed-Acceleration Probability Distribution, which sufficiently reflects the dynamic behavior of the vehicle, and the root mean square error, including parameters such as the average speed, average cruising speed, average acceleration, average deceleration, root mean square acceleration, and idle time percentage. The representative Bus Driving Cycle for Debrecen is prepared to be applied in the vehicle dynamics simulation for evaluating and improving the fuel economy of vehicles, selecting the proper power source for various applications and the optimization of the powertrain and the energy consumption in researches to be continued.
Databáze: OpenAIRE