Estimating the r-colorability threshold for a random hypergraph

Autor: Dmitry A. Shabanov
Rok vydání: 2020
Předmět:
Zdroj: Discrete Applied Mathematics. 282:168-183
ISSN: 0166-218X
DOI: 10.1016/j.dam.2019.10.031
Popis: The paper deals with estimating the r -colorability threshold for a random k -uniform hypergraph in the binomial model H ( n , k , p ) . We consider the sparse case, when the expected number of edges is a linear function of n , p n k = c n , and c > 0 , k ⩾ 4 , r ⩾ 3 are some fixed constants. We show that if c r k − 1 ln r − 1 2 ln r − r − 1 r + O ( k 2 r 1 − k ∕ 3 ln r ) then H ( n , k , c n ∕ n k ) is r -colorable with probability tending to 1 as n → ∞ .
Databáze: OpenAIRE