Estimating the r-colorability threshold for a random hypergraph
Autor: | Dmitry A. Shabanov |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Discrete Applied Mathematics. 282:168-183 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2019.10.031 |
Popis: | The paper deals with estimating the r -colorability threshold for a random k -uniform hypergraph in the binomial model H ( n , k , p ) . We consider the sparse case, when the expected number of edges is a linear function of n , p n k = c n , and c > 0 , k ⩾ 4 , r ⩾ 3 are some fixed constants. We show that if c r k − 1 ln r − 1 2 ln r − r − 1 r + O ( k 2 r 1 − k ∕ 3 ln r ) then H ( n , k , c n ∕ n k ) is r -colorable with probability tending to 1 as n → ∞ . |
Databáze: | OpenAIRE |
Externí odkaz: |