Non-methane Hydrocarbons and Their Ozone Formation Potentials in Foshan, China

Autor: Jihua Tan, Zongbo Shi, Jie-Wen Wang, Songjun Guo, Yong-Chang Yu, Yongliang Ma, Gang-Cai Chen, Fumo Yang, Kebin He
Rok vydání: 2012
Předmět:
Zdroj: Aerosol and Air Quality Research. 12:387-398
ISSN: 2071-1409
1680-8584
DOI: 10.4209/aaqr.2011.08.0127
Popis: Concentrations of non-methane hydrocarbons (NMHCs) were measured to investigate their temporal variations and major sources, and to explore the ozone formation potentials (OFP) of each NMHCs for the first time in December 2008 in Foshan. Ethane, propane, n-butane, i-pentane, 2,3-dimethylbutane, ethene, propene, ethyne, benzene and toluene were the 10 most abundant hydrocarbons, accounting for 82% of the concentration of total NMHCs. Concentrations of these hydrocarbons as well as their fractional contributions to the total NMHCs were higher in the morning and evening than in the afternoon, consistent with the variations in vehicle volumes during these periods. This suggests that the vehicular emission was likely the major source of NMHCs at this site. The mean B/T ratio (0.45 ± 0.24) further supported vehicular emission as the main source of the ambient NMHCs except for aromatic hydrocarbons. These aromatic hydrocarbons were mainly from solvent evaporation, as indicated by the diurnal variations in the ratios of toluene and m/p-xylene to benzene. The results from factor analysis also showed that combustion process and solvent usage were the major sources of NMHCs. On average, total Prop-Equiv and OFP were 153.0 ppbc and 863.4 μg/m 3 , respectively. Based on MIR (maximum incremental reactivity) scale, the leading contributors to OFP in decreasing concentrations were ethene, toluene, propene, i-pentane, m/p-xylene, 1-butene, ethylbenzene, o-xylene, 2,3-dimethylbutane and trans-2-butene, which in total explained 77% of the total OFP. Ranking by Prop-Equiv, the top 10 species were propene, toluene, ethene, 1-butene, i-pentane, m/pxylene, isoprene, 2,3-dimethylbutane, trans-2-butene and ethylbenzene, accounting for 66% of the total Prop-Equiv. Thus, alkenes played the most important role in O3 formation, followed by aromatics and alkanes during the study periods in Foshan.
Databáze: OpenAIRE