Detection of Drive-by Download Attacks Using Machine Learning Approach
Autor: | Zayed Balbahaith, Monther Aldwairi, Musaab Hasan |
---|---|
Rok vydání: | 2017 |
Předmět: |
World Wide Web
Drive-by download Web browser Computer science Download 05 social sciences 0202 electrical engineering electronic engineering information engineering 0507 social and economic geography 020201 artificial intelligence & image processing 02 engineering and technology 050703 geography Information Systems |
Zdroj: | International Journal of Information Security and Privacy. 11:16-28 |
ISSN: | 1930-1669 1930-1650 |
DOI: | 10.4018/ijisp.2017100102 |
Popis: | Drive-by download refers to attacks that automatically download malwares to user's computer without his knowledge or consent. This type of attack is accomplished by exploiting web browsers and plugins vulnerabilities. The damage may include data leakage leading to financial loss. Traditional antivirus and intrusion detection systems are not efficient against such attacks. Researchers proposed plenty of detection approaches mostly passive blacklisting. However, a few proposed dynamic classification techniques, which suffer from clear shortcomings. In this paper, we propose a novel approach to detect drive-by download infected web pages based on extracted features from their source code. We test 23 different machine learning classifiers using data set of 5435 webpages and based on the detection accuracy we selected the top five to build our detection model. The approach is expected to serve as a base for implementing and developing anti drive-by download programs. We develop a graphical user interface program to allow the end user to examine the URL before visiting the website. The Bagged Trees classifier exhibited the highest accuracy of 90.1% and reported 96.24% true positive and 26.07% false positive rate. |
Databáze: | OpenAIRE |
Externí odkaz: |