31P NMR Spectroscopy Demonstrates Large Amounts of Phosphohistidine in Mammalian Cells

Autor: Mehul V. Makwana, Michael P. Williamson, Richard F. W. Jackson, Sandra van Meurs, Richmond Muimo, Andrea M. Hounslow
Rok vydání: 2020
Předmět:
Popis: Protein phosphorylation plays a key role in many cellular processes but there is presently no accurate information or reliable procedure to determine the relative abundance of many phosphoamino acids in cells. At pH ≤ 8, phosphohistidine is unstable compared to the extensively studied phosphoserine, phosphothreonine and phosphotyrosine. This study reports the absolute quantitative analysis of histidine phosphorylation of proteins from a human bronchial epithelial cell (16HBE14o-) lysate using31P NMR spectroscopic analysis. The method was designed to minimize loss of the phosphohistidine phosphoryl group. Phosphohistidine was determined on average to be approximately one third as abundant as phosphoserine and phosphothreonine combined (and thus roughly 20 times more abundant than phosphotyrosine). The amount of phosphohistidine, and phosphoserine/phosphothreonine per gram of protein from a cell lysate was determined to be 23 μmol/g and 68 μmol/g respectively. The amount of phosphohistidine, and phosphoserine/phosphothreonine per cell was determined to be 1.8 fmol/cell, and 5.8 fmol/cell respectively. After tryptic digest of proteins from the16HBE14o- cell lysate, the phosphohistidine signal was abolished and increasing phosphoserine/phosphothreonine signal was observed, which has implications for mass spectrometry investigations. The31P NMR spectroscopic analysis not only highlights the abundance of phosphohistidine, which likely reflects its importance in mammalian cells, but also provides a way of measuring and comparing levels of phosphorylated amino acids in cells.
Databáze: OpenAIRE