On Some Properties of Superreflexive Besov Spaces
Autor: | A. N. Agadzhanov |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Doklady Mathematics. 101:177-181 |
ISSN: | 1531-8362 1064-5624 |
DOI: | 10.1134/s1064562420030035 |
Popis: | This paper contains results concerning superreflective Besov spaces $$B_{{p,q}}^{s}({{\mathbb{R}}^{n}})$$ . Namely, expressions for convexity moduli and smoothness moduli with respect to the “canonical” norms are derived, and properties related to the finite representability of Banach spaces and linear compact operators in $$B_{{p,q}}^{s}({{\mathbb{R}}^{n}})$$ are examined. Additionally, inequalities of the Prus–Smarzewski type for arbitrary equivalent norms and inequalities of the James–Gurariy type are presented. Based on the latter, two-sided estimates for the norms of elements in $$B_{{p,q}}^{s}({{\mathbb{R}}^{n}})$$ can be obtained in terms of the expansion coefficients of these elements in unconditional normalized Schauder bases. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |