Long arithmetic progressions in sum-sets and the number x-sum-free sets

Autor: Van H. Vu, Endre Szemerédi
Rok vydání: 2005
Předmět:
Zdroj: Proceedings of the London Mathematical Society. 90:273-296
ISSN: 1460-244X
0024-6115
DOI: 10.1112/s0024611504015059
Popis: In this paper we obtain optimal bounds for the length of the longest arithmetic progression in various kinds of sum-sets. As an application, we derive a sharp estimate for the number of sets $A$ of residues modulo a prime $n$ such that no subsum of $A$ equals $x$ modulo $n$, where $x$ is a fixed residue modulo $n$.
Databáze: OpenAIRE