Long arithmetic progressions in sum-sets and the number x-sum-free sets
Autor: | Van H. Vu, Endre Szemerédi |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Proceedings of the London Mathematical Society. 90:273-296 |
ISSN: | 1460-244X 0024-6115 |
DOI: | 10.1112/s0024611504015059 |
Popis: | In this paper we obtain optimal bounds for the length of the longest arithmetic progression in various kinds of sum-sets. As an application, we derive a sharp estimate for the number of sets $A$ of residues modulo a prime $n$ such that no subsum of $A$ equals $x$ modulo $n$, where $x$ is a fixed residue modulo $n$. |
Databáze: | OpenAIRE |
Externí odkaz: |