On the stability of solutions for a family of parabolic equations with time delay on $${\mathbb {R}}^n$$
Autor: | Almaz Butaev |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Complex Analysis and its Synergies. 5 |
ISSN: | 2197-120X 2524-7581 |
DOI: | 10.1007/s40627-019-0029-1 |
Popis: | In this paper we consider the following initial value problem $$\begin{aligned} \left\{ \begin{array}{ll} (\partial _t - \Delta _x + w\cdot \nabla _x +\alpha I) u(t,x) - \beta u(t-\tau ,x) = 0, &{} (t,x)\in {\mathbb {R}}_+\times {\mathbb {R}}^n \\ u(t,x) = \phi (t,x)\in C([-\tau ,0],L^1({\mathbb {R}}^n)) &{} \end{array} \right. \end{aligned}$$ We describe the ranges of the parameters $$\alpha , \beta ,\tau $$ that guarantee that every solution u(t, x) vanishes as $$t\rightarrow \infty $$ . |
Databáze: | OpenAIRE |
Externí odkaz: |