A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals
Autor: | C. K. Fong |
---|---|
Rok vydání: | 2002 |
Předmět: |
Discrete mathematics
Mathematics::Functional Analysis Series (mathematics) Integrable system General Mathematics Ordinary differential equation Eberlein–Šmulian theorem Mathematics::Classical Analysis and ODEs Banach space Mathematics::Metric Geometry Interval (graph theory) Locally integrable function Mathematics |
Zdroj: | Czechoslovak Mathematical Journal. 52:531-536 |
ISSN: | 1572-9141 0011-4642 |
DOI: | 10.1023/a:1021719627933 |
Popis: | We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |