A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals

Autor: C. K. Fong
Rok vydání: 2002
Předmět:
Zdroj: Czechoslovak Mathematical Journal. 52:531-536
ISSN: 1572-9141
0011-4642
DOI: 10.1023/a:1021719627933
Popis: We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
Databáze: OpenAIRE