Linearisation of flow sensors using evolutionary optimised function-based methods

Autor: J Babitha Thangamalar, A. Abudhahir
Rok vydání: 2021
Předmět:
Zdroj: Circuit World. 49:113-124
ISSN: 0305-6120
Popis: Purpose This study aims to propose optimised function-based evolutionary algorithms in this research to effectively replace the traditional electronic circuitry used in linearising constant temperature anemometer (CTA) and Microbridge mass flow sensor AWM 5000. Design/methodology/approach The proposed linearisation technique effectively uses the ratiometric function for the linearisation of CTA and Microbridge mass flow sensor AWM 5000. In addition, the well-known transfer relation, namely, the King’s Law is used for the linearisation of CTA and successfully implemented using LabVIEW 7.1. Findings Investigational results unveil that the proposed evolutionary optimised linearisation technique performs better in linearisation of both CTA and Mass flow sensors, and hence finds applications for computer-based flow measurement/control systems. Originality/value The evolutionary optimisation algorithms such as the real-coded genetic algorithm, particle swarm optimisation algorithm, differential evolution algorithm and covariance matrix adopted evolutionary strategy algorithm are used to determine the optimal values of the parameters present in the proposed ratiometric function. The performance measures, namely, the full-scale error and mean square error are used to analyse the overall performance of the proposed approach is compared to a state of art techniques available in the literature.
Databáze: OpenAIRE