Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation

Autor: Alex H. Ardila, Mykael Cardoso
Rok vydání: 2021
Předmět:
Zdroj: Communications on Pure & Applied Analysis. 20:101-119
ISSN: 1553-5258
DOI: 10.3934/cpaa.2020259
Popis: Using variational methods we study the stability and strong instability of ground states for the focusing inhomogeneous nonlinear Schrodinger equation (INLS) \begin{document}$ \begin{equation*} i\partial_{t}u+\Delta u+|x|^{-b}|u|^{p-1}u = 0. \end{equation*} $\end{document} We construct two kinds of invariant sets under the evolution flow of (INLS). Then we show that the solution of (INLS) is global and bounded in \begin{document}$ H^{1}(\mathbb{R^{N}}) $\end{document} in the first kind of the invariant sets, while the solution blow-up in finite time in the other invariant set. Consequently, we prove that if the nonlinearity is \begin{document}$ L^{2} $\end{document} -supercritical, then the ground states are strongly unstable by blow-up.
Databáze: OpenAIRE