MO583IN VITRO AND EX VIVO EXPERIMENTS OF VASCULAR CALCIFICATION

Autor: Joachim Jankowski, Jana Holmar, Heidi Noels, Setareh Orth-Alampour
Rok vydání: 2021
Předmět:
Zdroj: Nephrology Dialysis Transplantation. 36
ISSN: 1460-2385
0931-0509
Popis: Background and Aims Vascular calcification (VC) is one major complication in patients with chronic kidney disease whereas a misbalance in calcium and phosphate metabolism plays a crucial role. The mechanisms underlying VC have not been entirely revealed to date. Therefore are the studies aiming at the identification and characterization of the mediators/uremic toxins involved in VC ongoing and highly relevant. However, currently many different protocols being used in the studies of vascular calcification processes. This complicates the comparison of study outcomes, composing systematic reviews, and meta-analyses. Moreover, the reproducibility of data is hampered, and the efficiency in calcification research through the lack of a standardized protocol is reduced. In this study, we developed a standardized operating protocol for in vitro and ex vivo approaches to aiming at the comparability of these studies. Method We analysed in vitro and ex vivo experimental conditions to study VC. Vascular smooth muscle cells (HAoSMCs) were used for in vitro experiments and aortas from Wistar rats were used for ex vivo experiments. The influence of the following conditions was studied in detail: • Phosphate and calcium concentrations in calcifying media. • Incubation time. • Fetal calf serum (FCS) concentration. The degree of calcification was estimated by quantification of calcium concentrations that were normalized to protein content (in vitro) or to the dry weight of the aortic ring (ex vivo). Additionally, the aortic rings were stained using the von Kossa method. Optimal conditions for investigating medial vascular calcification were detected and summarized in the step-by-step protocol. Results We were able to demonstrate that the degree and the location of VC in vascular smooth muscle cells and aortic rings were highly dependent on the phosphate and CaCl2 concentration in the medium as well as the incubation time. Furthermore, the VC was reduced upon increasing fetal calf serum concentration in the medium. An optimized protocol for studying vascular calcification in vitro and ex vivo was developed and validated. The final protocol (Figure 1) presented will help to standardize in vitro and ex vivo approaches to investigate the processes of vascular calcification. Conclusion In the current study, we developed and validated a standardized operating protocol for systematic in vitro and ex vivo analyses of medial calcification, which is essential for the comparability of the results of future studies.
Databáze: OpenAIRE