Robust visual odometry estimation of road vehicle from dominant surfaces for large‐scale mapping
Autor: | Siamak Khatibi, J. Rafid Siddiqui |
---|---|
Rok vydání: | 2015 |
Předmět: |
Signal processing
business.industry Computer science Mechanical Engineering ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Transportation Odometry Computer Science::Computer Vision and Pattern Recognition Video tracking Motion estimation Robot Computer vision Artificial intelligence Visual odometry Scale (map) business Law Pose General Environmental Science |
Zdroj: | IET Intelligent Transport Systems. 9:314-322 |
ISSN: | 1751-9578 |
DOI: | 10.1049/iet-its.2014.0100 |
Popis: | Every urban environment contains a rich set of dominant surfaces which can provide a solid foundation for visual odometry estimation. In this work visual odometry is robustly estimated by computing the motion of camera mounted on a vehicle. The proposed method first identifies a planar region and dynamically estimates the plane parameters. The candidate region and estimated plane parameters are then tracked in the subsequent images and an incremental update of the visual odometry is obtained. The proposed method is evaluated on a navigation dataset of stereo images taken by a car mounted camera that is driven in a large urban environment. The consistency and resilience of the method has also been evaluated on an indoor robot dataset. The results suggest that the proposed visual odometry estimation can robustly recover the motion by tracking a dominant planar surface in the Manhattan environment. In addition to motion estimation solution a set of strategies are discussed for mitigating the problematic factors arising from the unpredictable nature of the environment. The analyses of the results as well as dynamic environmental strategies indicate a strong potential of the method for being part of an autonomous or semi-autonomous system. |
Databáze: | OpenAIRE |
Externí odkaz: |