A real-time high-precision interpolation algorithm for general-typed parametric curves in CNC machine tools

Autor: Xinjuan Jin, Yihong Long, Quan Liu
Rok vydání: 2010
Předmět:
Zdroj: International Journal of Computer Integrated Manufacturing. 23:168-176
ISSN: 1362-3052
0951-192X
DOI: 10.1080/09511920903501668
Popis: The machining accuracy of computer numerical control (CNC) machine tools largely depends on the interpolation algorithms implemented. In this paper, a real-time high-precision interpolation algorithm for a general-typed parametric curve is proposed. As with other time-partition interpolation algorithms, the linear motion trajectory (employed to approximate the real trajectory) in a sampling cycle is determined from the current position of the tool to another point (target point) on the target trajectory. To determine the target point in a sampling cycle, a neighbourhood interval containing the point is first determined, the target point is then iteratively approached by means of the bi-section or secant method for equation resolutions. Simulation results show that the order of magnitude of the maximum feedrate relative errors (the relative deviation of the computed feedrate from the desired one) is -8 or less, while the order of magnitude of the maximum chord errors in the unit of meter is -6 or less. The performance indices can be further improved with more computation iteration in each sampling cycle. The algorithm is general, and applicable to any smooth curve that can be formulated in parametric equations.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje