An existence result for Schrödinger equations with magnetic fields and exponential critical growth

Autor: Giovany M. Figueiredo, Sara Barile
Rok vydání: 2017
Předmět:
Zdroj: Journal of Elliptic and Parabolic Equations. 3:105-125
ISSN: 2296-9039
2296-9020
DOI: 10.1007/s41808-017-0007-9
Popis: We show the existence of a complex solution to the following magnetic Schrodinger equation $$\begin{aligned} - (\nabla + i A(x) )^2 \, u + u = f(|u|^2) u \quad \hbox {in} \, \mathbb R^2 \end{aligned}$$ where $$A: \mathbb R^2 \rightarrow \mathbb R^2$$ is a suitable magnetic potential and f satisfies exponential critical growth assumptions at infinity. We exploit some recent results established by means of a Trudinger-Moser inequality to the corresponding real equation in absence of the magnetic field (i.e., $$A(x) = 0$$ ).
Databáze: OpenAIRE