Spectral Stability of the $${\overline{\partial }}-$$Neumann Laplacian: Domain Perturbations
Autor: | Siqi Fu, Weixia Zhu |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | The Journal of Geometric Analysis. 32 |
ISSN: | 1559-002X 1050-6926 |
DOI: | 10.1007/s12220-021-00769-z |
Popis: | We study spectral stability of the $${\bar{\partial }}$$ ∂ ¯ -Neumann Laplacian on a bounded domain in $${\mathbb {C}}^n$$ C n when the underlying domain is perturbed. In particular, we establish upper semi-continuity properties for the variational eigenvalues of the $${\bar{\partial }}$$ ∂ ¯ -Neumann Laplacian on bounded pseudoconvex domains in $${\mathbb {C}}^n$$ C n , lower semi-continuity properties on pseudoconvex domains that satisfy property (P), and quantitative estimates on smooth bounded pseudoconvex domains of finite D’Angelo type in $${\mathbb {C}}^n$$ C n . |
Databáze: | OpenAIRE |
Externí odkaz: |