Development of Welding Procedures for X90-Grade Seamless Pipes for Riser Applications

Autor: Hiroyuki Nagayama, Nobuyuki Hisamune, Tetsuya Fukuba, Mark Vickers, Masahiko Hamada, Mark F. Mruczek, Archie Arredondo
Rok vydání: 2012
Předmět:
Zdroj: Volume 3: Materials and Joining.
DOI: 10.1115/ipc2012-90016
Popis: Ultra-high strength seamless pipes of X90 and X100 grades have been developed for deepwater or ultra-deepwater applications. Girth welding procedure specifications (WPSs) should be developed for the ultra-high strength pipes. However, there is little information for double jointing welding procedure by using submerged arc welding process for high strength line pipes. This paper describes mechanical test results of submerged arc welding (SAW) and gas shielded flux cored arc welding (GSFCAW) trials with various welding consumables procured from commercial markets. Welds were then made with typical welding parameters for riser productions using high strength X90 seamless pipes. The submerged arc weld metal strength could increase by increasing alloy elements in weld metal. The weld metal with CE (IIW) value of 0.74 mass% achieved fully overmatching for the X90 pipe. The weld metal yield strength (0.2% offset) was 694 MPa, and the ultimate tensile strength was 833 MPa. It was also confirmed that the reduction of boron in weld metal can improve low temperature toughness of high strength weld metal. Furthermore, it was confirmed that the HAZ has excellent mechanical properties and toughness for riser applications. In this study GSFCAW procedures were also developed. GSFCAW can be used for joining pipe and connector material for riser production welding. The weld metal with a CE (IIW) value of 0.54 mass% could meet the required strength level for X90-grade pipe as specified in ISO 3183. Cross weld tensile testing showed that fractures were achieved in the base metal. Good Charpy impact properties in weld metal and HAZ were also confirmed.
Databáze: OpenAIRE