Some numerical radius inequalities for products of Hilbert space operators
Autor: | Baharak Moosavi, Mohsen Hosseini Shah |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Filomat. 33:2089-2093 |
ISSN: | 2406-0933 0354-5180 |
DOI: | 10.2298/fil1907089h |
Popis: | We prove several numerical radius inequalities for products of two Hilbert space operators. Some of our inequalities improve well-known ones. More precisely, we prove that, if A,B ? B(H) such that A is self-adjoint with ?1 = min ?i ? ?(A) (the spectrum of A) and ?2 = max ?i ? ?(A). Then ?(AB) ?||A||?(B) + (||A|| - |?1 + ?2|/2)DB where DB = inf ??C ||B - ?I||. In particular, if A > 0 and ?(A) ? [k||A||,||A||], then ?(AB) ? (2 - k)||A|| ?(B). |
Databáze: | OpenAIRE |
Externí odkaz: |