The maximum hyper-Wiener index of cacti
Autor: | Shang-wang Tan, Dong-fang Wang |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Journal of Applied Mathematics and Computing. 47:91-102 |
ISSN: | 1865-2085 1598-5865 |
DOI: | 10.1007/s12190-014-0763-8 |
Popis: | The Wiener index of a connected graph \(G\) is the sum of distances between all unordered pairs of vertices in the graph. The hyper-Wiener index is defined as \(WW(G)= \frac{1}{2}\sum \nolimits _{\{u,v\} \subseteq V(G)}( d(u,v)+d^2 (u,v))\), where \(d(u,v)\) is the number of edges on a shortest path connecting vertices \(u\) and \(v\). A cactus graph is a connected graph in which each block is either an edge or a cycle. In the paper, we characterize the extremal cacti having the largest Wiener and hyper-Wiener indexes among all cacti with \(n\) vertices and \(r\) cycles. |
Databáze: | OpenAIRE |
Externí odkaz: |