1-Universal binary and ternary Hermitian lattices over imaginary quadratic fields
Autor: | Jiyoung Kim, Byeong Moon Kim |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Algebra and Number Theory Unary operation High Energy Physics::Lattice 010102 general mathematics Binary number 0102 computer and information sciences Positive-definite matrix 01 natural sciences Hermitian matrix Quadratic equation Number theory 010201 computation theory & mathematics Lattice (order) Mathematics::Differential Geometry 0101 mathematics Ternary operation Mathematics |
Zdroj: | The Ramanujan Journal. 55:673-696 |
ISSN: | 1572-9303 1382-4090 |
Popis: | A positive definite Hermitian lattice is said to be 1-universal if it represents all positive definite unary Hermitian lattices, including both free and non-free Hermitian lattices. This paper is more concerned with the representations of unary non-free Hermitian lattices by Hermitian lattices. We estimate the minimal rank $$u_m^1$$ of 1-universal Hermitian lattices and we classify all 1-universal binary and ternary Hermitian lattices over imaginary quadratic fields $$\mathbb {Q}(\sqrt{-m})$$ for all positive square-free integers m. |
Databáze: | OpenAIRE |
Externí odkaz: |