A modular compactification of ℳ1,n from A ∞-structures
Autor: | Yanki Lekili, Alexander Polishchuk |
---|---|
Rok vydání: | 2017 |
Předmět: |
0303 health sciences
Pure mathematics business.industry Applied Mathematics General Mathematics 010102 general mathematics Modular design 01 natural sciences Moduli space 03 medical and health sciences Torsion (algebra) Gravitational singularity Compactification (mathematics) 0101 mathematics business 030304 developmental biology Mathematics |
Zdroj: | Journal für die reine und angewandte Mathematik (Crelles Journal). 2019:151-189 |
ISSN: | 1435-5345 0075-4102 |
DOI: | 10.1515/crelle-2017-0015 |
Popis: | We show that a certain moduli space of minimal A ∞ A_{\infty} -structures coincides with the modular compactification ℳ ¯ 1 , n ( n - 1 ) {\overline{\mathcal{M}}}_{1,n}(n-1) of ℳ 1 , n \mathcal{M}_{1,n} constructed by Smyth in [26]. In addition, we describe these moduli spaces and the universal curves over them by explicit equations, prove that they are normal and Gorenstein, show that their Picard groups have no torsion and that they have rational singularities if and only if n ≤ 11 n\leq 11 . |
Databáze: | OpenAIRE |
Externí odkaz: |