A modular compactification of ℳ1,n from A ∞-structures

Autor: Yanki Lekili, Alexander Polishchuk
Rok vydání: 2017
Předmět:
Zdroj: Journal für die reine und angewandte Mathematik (Crelles Journal). 2019:151-189
ISSN: 1435-5345
0075-4102
DOI: 10.1515/crelle-2017-0015
Popis: We show that a certain moduli space of minimal A ∞ A_{\infty} -structures coincides with the modular compactification ℳ ¯ 1 , n ⁢ ( n - 1 ) {\overline{\mathcal{M}}}_{1,n}(n-1) of ℳ 1 , n \mathcal{M}_{1,n} constructed by Smyth in [26]. In addition, we describe these moduli spaces and the universal curves over them by explicit equations, prove that they are normal and Gorenstein, show that their Picard groups have no torsion and that they have rational singularities if and only if n ≤ 11 n\leq 11 .
Databáze: OpenAIRE