Conditional variance estimation in heteroscedastic regression models

Autor: Liang Peng, Ming-Yen Cheng, Lu-Hung Chen
Rok vydání: 2009
Předmět:
Zdroj: Journal of Statistical Planning and Inference. 139:236-245
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2008.04.020
Popis: First, we propose a new method for estimating the conditional variance in heteroscedasticity regression models. For heavy tailed innovations, this method is in general more efficient than either of the local linear and local likelihood estimators. Secondly, we apply a variance reduction technique to improve the inference for the conditional variance. The proposed methods are investigated through their asymptotic distributions and numerical performances.
Databáze: OpenAIRE