Dietaryα-lactalbumin induced fatty liver by enhancing nuclear liver X receptorαβ/sterol regulatory element-binding protein-1c/PPARγexpression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinaseαphosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice
Autor: | Alba Garcimartín, E. Muñoz-Martínez, María Elvira López-Oliva |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
medicine.medical_specialty Nutrition and Dietetics biology Fatty liver Medicine (miscellaneous) medicine.disease 03 medical and health sciences chemistry.chemical_compound Fatty acid synthase 030104 developmental biology Endocrinology Carnitine palmitoyltransferase 1 chemistry AMP-activated protein kinase Internal medicine Lipogenesis medicine biology.protein Steatosis Liver X receptor Fatty acid synthesis |
Zdroj: | British Journal of Nutrition. 118:914-929 |
ISSN: | 1475-2662 0007-1145 |
Popis: | The effect and the role played by dietaryα-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously thatα-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possibleα-LAC-induced hepatic steatosis. We examine the ability of dietaryα-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n6) were fed with diets containing either chow or 14 %α-LAC for 4 weeks. Theα-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptorαβ(LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγtranscription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepaticde novolipogenesis. The opposite was found for the nuclear receptor PPARαand the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acidβ-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinaseα(AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in theα-LAC-fed mice. In conclusion, 4 weeks of 14 %α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγexpression and diminishing PPARα/CPT-1 expression and AMPKαphosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice. |
Databáze: | OpenAIRE |
Externí odkaz: |