Popis: |
Quantum communication provides a new way for transmitting highly sensitive information. But the existence of quantum noise inevitably affects the security and reliability of a quantum communication system. The technique of weak measurement and its reversal measurement (WMRM) has been proposed to suppress the effect of quantum noise, especially, the amplitude-damping noise. Taking a GHZ based remote state preparation (RSP) scheme as an example, we discuss the effect of WMRM for suppressing four types of quantum noise that usually encountered in real-world, i.e., not only the amplitude-damping noise, but also the bit-flip, phase-flip (phase-damping) and depolarizing noise. And we give a quantitative study on how much a quantum output state can be improved by WMRM in noisy environment. It is shown that the technique of WMRM has certain effect for improving the fidelity of the output state in the amplitude-damping noise, and only has little effect for suppressing the depolarizing noise, while has no effect for suppressing the bit-flip and phase-flip (phase-damping) noise. Our result is helpful for improving the efficiency of entanglement-based quantum communication systems in real implementation. |