Popis: |
Skin tension may influence keloid scar behavior, development, and spreading, e.g., butterfly-shaped keloid disease in the sternum. Here, we developed a three-dimensional (3D) in vitro model to mimic in vivo tension and evaluate keloid fibroblast (KF) behavior and extracellular matrix synthesis under tension. In vivo skin tension measured in volunteers (n = 4) using 3D image photogrammetry enabled prediction of actual force (35 mN). A novel cell force monitor applied tension in a fibroblast-populated 3D collagen lattice replicating the in vivo force. The effect of tension on keloid (n = 10) fibroblast (KF) and normal skin (n = 10) fibroblasts (NF) at set time points (6, 12, and 24 hours) was measured in Hsp27, PAI-2, and α2β1 integrin, tension-related genes demonstrating significant (p |