Notes on a Grothendieck–Serre Conjecture in Mixed Characteristic Case
Autor: | Ivan Panin |
---|---|
Rok vydání: | 2021 |
Předmět: |
Statistics and Probability
Pure mathematics Zariski topology Conjecture Applied Mathematics General Mathematics 010102 general mathematics Principal (computer security) 01 natural sciences Discrete valuation ring 010305 fluids & plasmas Generic point Simple (abstract algebra) Residue field Group scheme 0103 physical sciences 0101 mathematics Mathematics |
Zdroj: | Journal of Mathematical Sciences. 252:841-848 |
ISSN: | 1573-8795 1072-3374 |
DOI: | 10.1007/s10958-021-05204-w |
Popis: | Let R be a discrete valuation ring with infinite residue field and X a smooth projective curve over R. Let G be a simple simply-connected group scheme over R and E a principal G-bundle over X. It is proved that E is trivial locally for the Zariski topology on X providing E is trivial over the generic point of X. The main aim of the present paper is to develop a method rather than to get a very strong concrete result. |
Databáze: | OpenAIRE |
Externí odkaz: |