Vortex search optimization algorithm for training of feed-forward neural network

Autor: Tahir Sağ, Zainab Abdullah Jalil Jalil
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Machine Learning and Cybernetics. 12:1517-1544
ISSN: 1868-808X
1868-8071
Popis: Training of feed-forward neural-networks (FNN) is a challenging nonlinear task in supervised learning systems. Further, derivative learning-based methods are frequently inadequate for the training phase and cause a high computational complexity due to the numerous weight values that need to be tuned. In this study, training of neural-networks is considered as an optimization process and the best values of weights and biases in the structure of FNN are determined by Vortex Search (VS) algorithm. The VS algorithm is a novel metaheuristic optimization method recently developed, inspired by the vortex shape of stirred liquids. VS fulfills the training task to set the optimal weights and biases stated in a matrix. In this context, the proposed VS-based learning method for FNNs (VS-FNN) is conducted to analyze the effectiveness of the VS algorithm in FNN training for the first time in the literature. The proposed method is applied to six datasets whose names are 3-bit XOR, Iris Classification, Wine-Recognition, Wisconsin-Breast-Cancer, Pima-Indians-Diabetes, and Thyroid-Disease. The performance of the proposed algorithm is analyzed by comparing with other training methods based on Artificial Bee Colony Optimization (ABC), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Genetic Algorithm (GA) and Stochastic Gradient Descent (SGD) algorithms. The experimental results show that VS-FNN is generally leading and competitive. It is also said that VS-FNN can be used as a capable tool for neural networks.
Databáze: OpenAIRE