THE BOUNDARY OF THE p-RANK STRATUM OF THE MODULI SPACE OF CYCLIC COVERS OF THE PROJECTIVE LINE
Autor: | Rachel Pries, Colin Weir, Ekin Ozman |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Nagoya Mathematical Journal. 248:865-887 |
ISSN: | 2152-6842 0027-7630 |
DOI: | 10.1017/nmj.2022.12 |
Popis: | We study the p-rank stratification of the moduli space of cyclic degree $\ell $ covers of the projective line in characteristic p for distinct primes p and $\ell $ . The main result is about the intersection of the p-rank $0$ stratum with the boundary of the moduli space of curves. When $\ell =3$ and $p \equiv 2 \bmod 3$ is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type $(r,s)$ , and p-rank f satisfying the clear necessary conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |