THE BOUNDARY OF THE p-RANK STRATUM OF THE MODULI SPACE OF CYCLIC COVERS OF THE PROJECTIVE LINE

Autor: Rachel Pries, Colin Weir, Ekin Ozman
Rok vydání: 2022
Předmět:
Zdroj: Nagoya Mathematical Journal. 248:865-887
ISSN: 2152-6842
0027-7630
DOI: 10.1017/nmj.2022.12
Popis: We study the p-rank stratification of the moduli space of cyclic degree $\ell $ covers of the projective line in characteristic p for distinct primes p and $\ell $ . The main result is about the intersection of the p-rank $0$ stratum with the boundary of the moduli space of curves. When $\ell =3$ and $p \equiv 2 \bmod 3$ is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type $(r,s)$ , and p-rank f satisfying the clear necessary conditions.
Databáze: OpenAIRE