Popis: |
Ensuring wells’ cement mechanical integrity (CMI) is of paramount importance for the success of a thermal project. Failed cement sheaths can lead to loss of production, environmental pollutions, or even to well abandonment. Over time, CMI software applications have been developed to design wells that do not leak. However, their efficiency depends not only on if their equations are verified, but also on how the models are validated versus wells’ downhole conditions. Unfortunately, most CMI tool designers have focused on only verifying if the models are mathematically correct, checking what is the time required for a simulation, and improving how are the simulations reported to the user. Typically, little time is dedicated on validating that the correct model is used for the specific well. This foresight has led to non-predictive CMI tools, which do not allow optimizing well designs. The authors have been involved for more than 15 years in developing and validating CMI models. They have shown the importance of simulating the cement hydration to evaluate the state of stress in the cement after it has set. They also have highlighted how the plastic behavior of the cement design can lead to opening micro-annuli at the cement-sheath's interfaces. Recently the authors have started theoretical work in the area of the cement integrity of high and ultra-high temperature wells and how these temperatures, either naturally occurring or induced, could affect the cement's mechanical integrity. The work has focused on modeling the increase in pore pressures, the opening of micro-annuli at the cement sheath's boundaries, and the phase changes which take place in the cement when it is heated to high temperature values. To date this work showed that heating cement up to 250°C can result in pore pressures larger than 100 MPa unless if the pore pressures can be released. This work has also identified three mechanisms that can lead to such release of pore pressures: 1) During cement hydration, due to the water consumption by the chemical reactions, 2) When a micro-annulus opens due to the large pore pressures, therefore allowing venting the pressures to the surface or to a downhole reservoir, and 3) When a change of phase occurs in the cement when heated to more than 110°C, as this leads to the creation of additional porosity in the cement. All this means that the cement sheath should not be simulated as a closed system, but rather as an open thermo-hydro-chemo-mechanics. How these features impact CMI has never been studied before even if they can explain why some cement designs lead to tight cement sheath and other to leaking ones. This paper highlights the work that has been done and when these conditions should be considered, and if it is feasible to design cement sheaths that do not fail, even at very high temperatures. |