An ab initio study of 3-aminopropyltrimethoxysilane molecule on Si(111)-() surface
Autor: | Mehmet Çakmak, G. Birlik, Tuncer Çaykara, Gökçen Birlik Demirel, Ş. Ellialtıoğlu |
---|---|
Rok vydání: | 2007 |
Předmět: |
Silicon
Ab initio chemistry.chemical_element Self-assembled monolayer Surfaces and Interfaces Condensed Matter Physics Surfaces Coatings and Films Crystallography Molecular geometry chemistry Ab initio quantum chemistry methods Chemisorption Computational chemistry Materials Chemistry Molecule Density functional theory |
Zdroj: | Surface Science. 601:3740-3744 |
ISSN: | 0039-6028 |
DOI: | 10.1016/j.susc.2007.04.045 |
Popis: | The chemisorption and reaction of 3-aminopropyltrimethoxysilane (APTS) molecule on the Si(1 1 1)-( 3 × 3 ) surface are investigated by first principles density-functional calculations within the generalized gradient approximation. Before studying the chemisorption of APTS molecule on the surface, we have firstly put three –OH groups on the silicon surface, but considering six different locations for H and O atoms. Upon their relaxations, model II, which is assumed to be crosswise for initial orientation of –OH groups, was found to be energetically more favorable than the others. In model II, after the relaxation, its conformation was transformed to skewed structure due to the repulsive forces between –OH groups. Isolated APTS molecule was also investigated in order to obtain its most stable molecular geometry, for which the HOMO–LUMO gap was found to be 4.41 eV. In addition to these, after the energetically most favorable hydroxylated Si(1 1 1) surface was calculated, APTS molecule was chemisorbed on the surface by means of liberating its methoxy groups. In our model for the binding of APTS molecule on the Si(1 1 1) surface, the silicon atom in the APTS forms three bonds to hydroxyl groups at the surface. |
Databáze: | OpenAIRE |
Externí odkaz: |