Pseudo-Frobenius numbers versus defining ideals in numerical semigroup rings
Autor: | Hoang Le Truong, Do Van Kien, Shiro Goto, Naoyuki Matsuoka |
---|---|
Rok vydání: | 2018 |
Předmět: |
Ring (mathematics)
Pure mathematics Algebra and Number Theory Mathematics::Commutative Algebra Mathematics::Operator Algebras Semigroup 010102 general mathematics Structure (category theory) Field (mathematics) 01 natural sciences Integer Numerical semigroup 0103 physical sciences 010307 mathematical physics Ideal (ring theory) 0101 mathematics Mathematics |
Zdroj: | Journal of Algebra. 508:1-15 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2018.04.025 |
Popis: | The structure of the defining ideal of the semigroup ring k [ H ] of a numerical semigroup H over a field k is described, when the pseudo-Frobenius numbers of H are multiples of a fixed integer. |
Databáze: | OpenAIRE |
Externí odkaz: |