Using data images for outlier detection

Autor: Jeffrey L. Solka, David J. Marchette
Rok vydání: 2003
Předmět:
Zdroj: Computational Statistics & Data Analysis. 43:541-552
ISSN: 0167-9473
DOI: 10.1016/s0167-9473(02)00291-8
Popis: The data image has been proposed as a method for visualizing high-dimensional data. The idea is to map the data into an image, by using gray-scale (or color) values to indicate the magnitude of each variate. Thus, the image for a data set of size n and dimension d is a d × η image, where the columns correspond to observations and the rows to variates. We consider the application of this idea to the detection of outliers, providing a simple visualization technique that highlights outliers and clusters within the data.
Databáze: OpenAIRE