Global solvability of the Cauchy problem for the Navier–Stokes equation in $$\mathbb {R}^3$$ for some class of initial data
Autor: | W. M. Zaja̧czkowski, K. Pileckas |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Mathematische Zeitschrift. 260:305-327 |
ISSN: | 1432-1823 0025-5874 |
DOI: | 10.1007/s00209-007-0275-4 |
Popis: | In this paper we prove the existence of regular solutions to the Navier–Stokes equations if the initial data v0 have some finite weighted norm and supp v0 belongs to \(\mathbb {R}^3{\setminus}B_{R_0}\) , \(B_{R_0}\) is a ball with radius R0, where R0 is sufficiently large. The proof follows from appropriate estimates in weighted Sobolev spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |