Global solvability of the Cauchy problem for the Navier–Stokes equation in $$\mathbb {R}^3$$ for some class of initial data

Autor: W. M. Zaja̧czkowski, K. Pileckas
Rok vydání: 2007
Předmět:
Zdroj: Mathematische Zeitschrift. 260:305-327
ISSN: 1432-1823
0025-5874
DOI: 10.1007/s00209-007-0275-4
Popis: In this paper we prove the existence of regular solutions to the Navier–Stokes equations if the initial data v0 have some finite weighted norm and supp v0 belongs to \(\mathbb {R}^3{\setminus}B_{R_0}\) , \(B_{R_0}\) is a ball with radius R0, where R0 is sufficiently large. The proof follows from appropriate estimates in weighted Sobolev spaces.
Databáze: OpenAIRE