Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds
Autor: | Eui Chul Kim |
---|---|
Rok vydání: | 2013 |
Předmět: |
Pure mathematics
Spinor Dirac (software) Mathematical analysis Mathematics::Spectral Theory Dirac operator Manifold Twistor theory Riemann hypothesis symbols.namesake Differential geometry symbols Mathematics::Differential Geometry Geometry and Topology Connection (algebraic framework) Analysis Mathematics |
Zdroj: | Annals of Global Analysis and Geometry. 45:67-93 |
ISSN: | 1572-9060 0232-704X |
Popis: | We consider a two-parameter generalization $$D_{ab}$$ of the Riemann Dirac operator $$D$$ on a closed Sasakian spin manifold, focusing attention on eigenvalue estimates for $$D_{ab}$$ . We investigate a Sasakian version of twistor spinors and Killing spinors, applying it to establish a new connection deformation technique that is adapted to fit with the Sasakian structure. Using the technique and the fact that there are two types of eigenspinors of $$D_{ab}$$ , we prove several eigenvalue estimates for $$D_{ab}$$ which improve Friedrich’s estimate (Friedrich, Math Nachr 97, 117–146, 1980). |
Databáze: | OpenAIRE |
Externí odkaz: |