Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds

Autor: Eui Chul Kim
Rok vydání: 2013
Předmět:
Zdroj: Annals of Global Analysis and Geometry. 45:67-93
ISSN: 1572-9060
0232-704X
Popis: We consider a two-parameter generalization $$D_{ab}$$ of the Riemann Dirac operator $$D$$ on a closed Sasakian spin manifold, focusing attention on eigenvalue estimates for $$D_{ab}$$ . We investigate a Sasakian version of twistor spinors and Killing spinors, applying it to establish a new connection deformation technique that is adapted to fit with the Sasakian structure. Using the technique and the fact that there are two types of eigenspinors of $$D_{ab}$$ , we prove several eigenvalue estimates for $$D_{ab}$$ which improve Friedrich’s estimate (Friedrich, Math Nachr 97, 117–146, 1980).
Databáze: OpenAIRE