Stability of Mixed Additive–Quadratic and Additive–Drygas Functional Equations
Autor: | Chang-Kwon Choi, Bogeun Lee |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Results in Mathematics. 75 |
ISSN: | 1420-9012 1422-6383 |
DOI: | 10.1007/s00025-020-1163-z |
Popis: | In this paper, using the Baire category theorem we investigate the Hyers–Ulam stability problem of mixed additive–quadratic and additive–Drygas functional equations $$\begin{aligned} 2f(x+y) + f(x-y) - 3f(x) -3f(y)&= 0,\\ 2f(x+y) + f(x-y) - 3f(x) -2f(y) -f(-y)&= 0 \end{aligned}$$on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations. |
Databáze: | OpenAIRE |
Externí odkaz: |