Preparation of fluorine-free anti-acid and breathable composite fabric based on modified SBS/pitch electrospun nanofibers
Autor: | Yiqing Shao, Lu Wang, Huimin Zhou, Xin Xia, Chengmeizi Wang, Qingle Zhang |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Textile Research Journal. 91:1535-1545 |
ISSN: | 1746-7748 0040-5175 |
DOI: | 10.1177/0040517520982588 |
Popis: | To develop a fluorine-free material of acidproof and breathable fabric, styrene–butadiene–styrene (SBS) blended with pitch was directly deposited on polyester/cotton blended fabric through electrospinning to fabricate a nanofibrous membrane composite fabric. Acrylic acid (AA) and methyl methacrylate (MMA) were used to graft SBS to improve compatibility between SBS and pitch, and the modified temperatures were set at 40°C, 60°C and 80°C. The effects of different grafting monomers and temperatures on the properties of SBS/pitch membrane composite fabrics were explored by Fourier transform infrared spectral analysis; morphological structures, acid-resistant properties and breathability (vapor permeability and air permeability) were also examined. The results showed that modified SBS/pitch membrane composite fabrics possessed good acid resistance and modest breathability. SBS-g-MMA/pitch (means SBS grafted by MMA) exhibited the highest acid resistance due to more evenly distributed beads than original SBS/pitch membrane composite fabrics and higher roughness than SBS-g-AA/pitch (means SBS grafted by AA) membrane composite fabrics. By systematically changing the grafting temperature, SBS-g-MMA/pitch membrane composite fabrics for which SBS was grafted by MMA at 80°C presented appropriate air permeability (120.5 mm/s), modest water vapor transport rate (13,656.45 g/(m2·d)), good tensile strength (1203 N) and bursting strength (616 N), and the best acid resistance (143°); meanwhile the acid penetration level reached level 3, which was attributed to the low surface energy caused by the fused ring from the pitch and the rough surface caused by the micro-beads in the nanofibers. The obtained modified SBS/pitch membrane composite fabric could be potentially applied in acidproof fabrics. |
Databáze: | OpenAIRE |
Externí odkaz: |