Solvothermal nanoYAG synthesis: Mechanism and particle growth kinetics
Autor: | Shaghayegh Ghanizadeh, Jon Binner, Chris Spacie, Prabhu Ramanujam, Bala Vaidhyanathan |
---|---|
Rok vydání: | 2016 |
Předmět: |
Coalescence (physics)
Ostwald ripening Materials science General Chemical Engineering Kinetics Nanoparticle Nanotechnology 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Chemical reaction 0104 chemical sciences Nanoclusters symbols.namesake Crystallinity Chemical engineering symbols Physical and Theoretical Chemistry 0210 nano-technology Dissolution |
Zdroj: | The Journal of Supercritical Fluids. 107:433-440 |
ISSN: | 0896-8446 |
DOI: | 10.1016/j.supflu.2015.09.031 |
Popis: | NanoYAG particles with spherical morphology have been synthesised using a solvothermal method; a structure sensitive reaction, where the chemical reaction and the particle growth kinetics are interdependent. It has been observed that the primary YAG particles agglomerated into ∼30 nm clusters via a self-assembled Ostwald ripening process along (2 1 1) planes, separated by a distance of ∼0.49 nm, at 270 °C and 2.0 MPa for 2 h. These nanoclusters coalesced into single nanoparticles of ∼30 nm in size and exhibited a smaller inter planar distance of ∼0.26 nm, corresponding to the (4 2 0) planes, when synthesized at 300 °C and 8.5 MPa for 2 h. in addition, the solvent 1,4-butanediol transformed into 1,4-diacetoxybutane, this will have undergone esterification by reacting with the terminal acetate groups cleaved from the precursor, yttrium acetate. The proposed mechanism based on the analytical evidence suggests that a complete dissolution of precursors facilitated the structural re-arrangement of atoms within the planes and lead to a significantly higher degree of crystallinity. Moreover, once the particles with (4 2 0) planes had formed, they were no longer involved in facile coalescence along their preferential planes due to their lower interfacial energy compared to the (2 1 1) planes. This led to control of the particle morphology and with little agglomeration occurring in the final nanopowder. |
Databáze: | OpenAIRE |
Externí odkaz: |