Largest 2-Regular Subgraphs in 3-Regular Graphs
Autor: | Douglas B. West, Ringi Kim, Alexandr V. Kostochka, Ilkyoo Choi, Boram Park |
---|---|
Rok vydání: | 2019 |
Předmět: |
Combinatorics
010201 computation theory & mathematics Multigraph 0211 other engineering and technologies Discrete Mathematics and Combinatorics Cubic graph 021107 urban & regional planning 0102 computer and information sciences 02 engineering and technology 01 natural sciences Graph Theoretical Computer Science Mathematics |
Zdroj: | Graphs and Combinatorics. 35:805-813 |
ISSN: | 1435-5914 0911-0119 |
Popis: | For a graph G, let $$f_2(G)$$ denote the largest number of vertices in a 2-regular subgraph of G. We determine the minimum of $$f_2(G)$$ over 3-regular n-vertex simple graphs G. To do this, we prove that every 3-regular multigraph with exactly c cut-edges has a 2-regular subgraph that omits at most $$\max \{0,\lfloor (c-1)/2\rfloor \}$$ vertices. More generally, every n-vertex multigraph with maximum degree 3 and m edges has a 2-regular subgraph that omits at most $$\max \{0,\lfloor (3n-2m+c-1)/2\rfloor \}$$ vertices. These bounds are sharp; we describe the extremal multigraphs. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |