Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope
Autor: | Qingjun Zhang, Aiwu Zeng, Pengyuan Shi, Xigang Yuan, Youguang Ma |
---|---|
Rok vydání: | 2020 |
Předmět: |
Exergy
Materials science 020209 energy 02 engineering and technology Industrial and Manufacturing Engineering law.invention chemistry.chemical_compound 020401 chemical engineering law Boiling Sankey diagram Azeotrope 0202 electrical engineering electronic engineering information engineering 0204 chemical engineering Electrical and Electronic Engineering Process engineering Distillation Civil and Structural Engineering Energy recovery Entropy production business.industry Mechanical Engineering Building and Construction Pollution General Energy chemistry Methanol business |
Zdroj: | Energy. 196:117095 |
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2020.117095 |
Popis: | The feasibility and effectiveness of the intensified vapor recompression-assisted pressure-swing distillation (PSDVRC) arrangements in different separation sequences are explored with separating a maximum-boiling methanol/diethylamine azeotrope as the specific example. The energy-efficient Heat Exchanger Network Synthesis (HENs) option is used to further improve the possible energy recovery in certain arrangement. The globally optimal arrangement is the intensified self-heat recuperative vapor recompression-assisted PSDVRC-FP-HEN process in the low-pressure column (LPC)-to-high pressure column (HPC) sequence. The reductions of 39.33% (13.93%) in total annual cost, 89.12% (81.95%) in carbon footprints, and the improvement of 116.31% (44.71%) in second-law efficiency can be achieved in comparison with the conventional process, wherein, the data in these brackets represent the economically optimal heat-integrated configuration. And the exergy destruction in each component (Sankey diagram) for all eco-efficiently intensified alternatives are obtained. Result shows that the exergy increase in LPC-to-HPC sequence is higher than that of another sequence, along with the major exergy losses generated in columns, and the distribution of the irreversibility for each individual component in the system is approximately identical when the entropy production analysis and exergy analysis are employed. |
Databáze: | OpenAIRE |
Externí odkaz: |