Oscillation Reduction and Frequency Analysis of Under-Constrained Cable-Driven Parallel Robot with Three Cables

Autor: Jonghyun Yoon, Jeong Hyeon Bak, Jong Hyeon Park, Sung Wook Hwang
Rok vydání: 2019
Předmět:
Zdroj: Robotica. 38:375-395
ISSN: 1469-8668
0263-5747
DOI: 10.1017/s0263574719000687
Popis: SummaryCable-driven parallel robots (CDPRs) possess a lot of advantages over conventional parallel manipulators and link-based robot manipulators in terms of acceleration due to their low inertia. This paper deals with under-constrained CDPRs, which manipulate the end-effector to carrying the payload by using a number of cables less than six, often used preferably owing to their simple structures. Since a smaller number of cables than six are used, the end-effector of CDPR has uncontrollable degrees of freedom and that causes swaying motion and oscillations. In this paper, a scheme to curb on the unwanted oscillation of the end-effector of the CDPR with three cables is proposed based on multimode input shaping. The precise dynamic model of the under-constrained CDPR is obtained to find natural frequencies, which depends on the position of the end-effector. The advantage of the proposed method is that it is practicable to generate the trajectories for vibration suppression based on multi-mode input-shaping scheme in spite of the complexity in the dynamics and the difficulty in computing the natural frequencies of the CDPR, which are required in any input-shaping scheme. To prove the effectiveness of the proposed method, computer simulations and experiments were carried out by using 3-D motion for CDPR with three cables.
Databáze: OpenAIRE