Energetic Polymers: Synthesis and Applications

Autor: Alexander J. Paraskos
Rok vydání: 2017
Předmět:
Zdroj: Challenges and Advances in Computational Chemistry and Physics ISBN: 9783319592060
DOI: 10.1007/978-3-319-59208-4_4
Popis: Energetic polymeric materials typically consist of both a hydrocarbon-based fuel component as well as one or more oxidizing “explosophore” components. The use of energetic rather than fuel-rich polymers is theoretically advantageous in explosive and propellant applications as they contribute high temperature and pressure characteristics to the resulting formulations, produce less smoke (soot) and do not require the incorporation of large amounts of solid oxidizers such as ammonium perchlorate (AP), ammonium nitrate (AN) or ammonium dinitramide (ADN) in order to achieve effective combustion. The most commonly used energetic polymer, nitrocellulose (NC), is also one of the first known energetic polymers; it has been successfully utilized for decades in both rocket and gun-propellant applications. The chemistry and uses of NC have been reviewed extensively in the past. Therefore, this chapter will focus on more recent investigations and the development of modern energetic polymers, including oxirane-derived and oxetane-derived materials, energetic thermoplastic elastomers (ETPE’s) as well as several other new classes of energetic polymers.
Databáze: OpenAIRE