The structure vector field and structure Jacobi operator of real hypersurfaces in nonflat complex space forms
Autor: | U-Hang Ki, Ryoichi Takagi, Setsuo Nagai |
---|---|
Rok vydání: | 2010 |
Předmět: |
Pure mathematics
Mathematics::Complex Variables Jacobi operator Hyperbolic geometry Operator (physics) Mathematical analysis Structure (category theory) Algebraic geometry Mathematics::Algebraic Geometry Complex space Differential geometry Mathematics::Differential Geometry Geometry and Topology Ricci curvature Mathematics |
Zdroj: | Geometriae Dedicata. 149:161-176 |
ISSN: | 1572-9168 0046-5755 |
Popis: | In this paper we determine the real hypersurfaces for which the structure Jacobi operator commutes over both the Ricci tensors and structure tensors (for a definition of the operator see Sect. 1). We prove that such hypersurfaces are homogneous real hypersurfaces of type (A) and are a special class of Hopf hypersurfaces. |
Databáze: | OpenAIRE |
Externí odkaz: |