Fractional Diffusion with Time-Dependent Diffusion Coefficient

Autor: Adrián Ricardo Gómez Plata, Felix Silva Costa, E. Capelas de Oliveira
Rok vydání: 2021
Předmět:
Zdroj: Reports on Mathematical Physics. 87:59-79
ISSN: 0034-4877
DOI: 10.1016/s0034-4877(21)00011-2
Popis: In this paper we propose and discuss the fractional diffusion equation with time-dependent diffusion coefficient, considering the Hilfer-type and Weyl fractional derivatives in the time-variable and space-variable, respectively. We apply the similarity method and Mellin transform methodology to find an explicit solution in terms of Fox H-function. We illustrate graphically the diffusive behaviour described by memory and distance effects. We also recover the classical integer order solution as a particular case.
Databáze: OpenAIRE