Popis: |
This review paper discusses the complete evolution of free-space optical (FSO) communication, also known as unguided optical communication (UOC) technologies, all the way back to ancient man’s fire to today’s machine-learning-supported UOC systems. The principles, significance, and developments that have happened over the past several decades, as well as installation methodologies, technological limitations, and today’s challenges of UOCs are presented. All the subsets of UOC: FSO communication, underwater optical wireless communication (UOWC), and visible light communication (VLC), with their technology/system developments, potential applications, and limitations are reviewed. The state-of-the-art developments/achievements in (i) FSO channel effects and their mitigation techniques; (ii) radio-over-FSO techniques; (iii) wavelength division multiplexing and sub-carrier multiplexing techniques; (iv) FSO for worldwide interoperability for microwave access applications; (v) space optical satellite communication (SOSC); (vi) UWOC; (vii) photoacoustic communication (PAC); (viii) light-fidelity; (ix) VLC; (x) vehicular VLC (V2LC); and (xi) optical camera communication are reviewed. In addition, the current developments on emerging technologies such as artificial intelligence (to improve the performance of UOC systems), energy harvesting (for the effective utilization of UOC channels), and near-future communication network scenarios (mandatory for secured broadband digital links) are covered. Finally, in brief, to achieve the full potential of UOC systems, challenges that require immediate research attention are summarized. |