On approximation classes for adaptive time-stepping finite element methods
Autor: | Marcelo Actis, Pedro Morin, Cornelia Schneider |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | IMA Journal of Numerical Analysis. |
ISSN: | 1464-3642 0272-4979 |
DOI: | 10.1093/imanum/drac056 |
Popis: | We study approximation classes for adaptive time-stepping finite element methods for time-dependent partial differential equations. We measure the approximation error in $L_2([0,T)\times \varOmega )$ and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a by-product we define anisotropic Besov spaces for Banach-space-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates. |
Databáze: | OpenAIRE |
Externí odkaz: |