On approximation classes for adaptive time-stepping finite element methods

Autor: Marcelo Actis, Pedro Morin, Cornelia Schneider
Rok vydání: 2022
Předmět:
Zdroj: IMA Journal of Numerical Analysis.
ISSN: 1464-3642
0272-4979
DOI: 10.1093/imanum/drac056
Popis: We study approximation classes for adaptive time-stepping finite element methods for time-dependent partial differential equations. We measure the approximation error in $L_2([0,T)\times \varOmega )$ and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a by-product we define anisotropic Besov spaces for Banach-space-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.
Databáze: OpenAIRE